The human immune response to Toxoplasma: Autophagy versus cell death
نویسندگان
چکیده
Introduction Toxoplasma gondii is an obligate intracellular parasite that can infect a broad range of warmblooded animals. In humans, it can cause serious disease in immune-compromised individuals or if contracted congenitally. In North America and Europe, strains belonging to the clonal types I, II, and III haplogroups predominate, while in South America a large variety of other “atypical” strains exist. These strains differ enormously in virulence in mice and there is evidence that different strains can also cause variable pathology in humans. In mice, the cytokine interferon gamma (IFNγ) induces multiple toxoplasmacidal mechanisms and therefore plays a crucial role in immunity to Toxoplasma. Compared to mice, humans are more resistant to Toxoplasma. This is surprising because humans lack the Toll-like receptors 11/12 (TLR11/12) found in mice that bind to the Toxoplasma protein profilin and trigger a signaling cascade leading to the production of interleukin 12 (IL12), a key cytokine that stimulates IFNγ production. Humans also lack the multitude of murine immunity-related GTPases (IRGs) that are induced upon IFNγ stimulation and play a crucial role in the destruction of the membrane surrounding the parasitophorous vacuole (PV) in which Toxoplasma resides in the host cytoplasm. Thus, the mechanisms involved in the production of IFNγ in humans (Fig 1) differ from those in mice and the pathways that mediate parasite clearance are less well understood (reviewed in [1]). In this review, we focus on two mechanisms of Toxoplasma clearance by human cells: autophagy and cell death.
منابع مشابه
Analysis of Monensin Sensitivity in Toxoplasma gondii Reveals Autophagy as a Mechanism for Drug Induced Death
Understanding the mechanisms by which anti-parasitic drugs alter the physiology and ultimately kill is an important area of investigation. Development of novel parasitic drugs, as well as the continued utilization of existing drugs in the face of resistant parasite populations, requires such knowledge. Here we show that the anti-coccidial drug monensin kills Toxoplasma gondii by inducing autoph...
متن کاملThe Role of Interleukin (IL-22) in immune response to human diseases
Background and aims: IL-22 is an alpha- helical cytokine. IL-22 binds to a heterodimeric cell surface receptor composed of IL-10R2 and IL-22R1subunits. IL-22R is expressed on tissue cells, and it is absent on immune cells. L-22 and IL-10 receptor chains play a role in cellular targeting and signal transduction to selectively initiate and regulate immune responses. The aim of this study was to i...
متن کاملMolecular Interactions of Autophagy with the Immune System and Cancer
Autophagy is a highly conserved catabolic mechanism that mediates the degradation of damaged cellular components by inducing their fusion with lysosomes. This process provides cells with an alternative source of energy for the synthesis of new proteins and the maintenance of metabolic homeostasis in stressful environments. Autophagy protects against cancer by mediating both innate and adaptive ...
متن کاملEvaluation of Humoral Immune Response of Cats to the Experimental Infection with the different Clonal Types of Toxoplasma gondii by Measurement of IgG Antibodies
Toxoplasma gondii is one of the most prevalent parasitic infections in world. Rh, NED and Me49 are of the most prevalent clonal types of the parasite isolated till now. Differences in pathogenicity and virulence of different types have been investigated in different studies. No controlled study was performed to compare the ability of different types to initiate humoral immune response. We inves...
متن کاملK63-Linked Ubiquitination Targets Toxoplasma gondii for Endo-lysosomal Destruction in IFNγ-Stimulated Human Cells
Toxoplasma gondii is the most common protozoan parasitic infection in man. Gamma interferon (IFNγ) activates haematopoietic and non-haematopoietic cells to kill the parasite and mediate host resistance. IFNγ-driven host resistance pathways and parasitic virulence factors are well described in mice, but a detailed understanding of pathways that kill Toxoplasma in human cells is lacking. Here we ...
متن کامل